• 用户名
  • 密码
  • 产品
供应
求购
公司
资讯
展会
评论访谈专题话题印搜动态
国内国际环保视频产品导购
活动展会设备印品世界
行业动态企业动态营销电子商务政策法规统计商机
印前印中印后包装器材耗材油墨
胶印数码标签CTP纸箱创意丝印柔印其他
展会专题企业专题资讯专题技术专题
文化人物社会
展会预告会议预告展会资讯国内展会国际展会推荐展会
印刷包装丝印
印刷包装丝印
印刷包装丝印
您当前位置: CPP114首页> 正文

  • 今日排行
  • 本周排行
  • 本月排行

胶印油墨
胶印材料
丝印材料

印刷体文字的识别研究方法分类介绍

2010-12-06 15:17:57.0 来源:中国中部印刷网 责编:江佳

摘要:
 识别方法是整个系统的核心。用于汉字识别的模式识别方法可以大致分为结构模式识别、统计模式识别及两者的结合。下面分别进行介绍。

  (9)特征点特征。早在1957年,Solatron Electronics Group公司发布了第一个利用窥视孔(peephole)方法的OCR系统。其主要思想是利用字符点阵中一些有代表性的黑点(笔划),白点(背景)作为特征来区分不同的字符。后有人又将这种方法运用到汉字识别中,对其中的黑点又增加了属性的描述,如端点、折点、交叉点等。也获得了比较好的效果。其特点是对于内部笔划粘连的字符的识别的适应性较强,直观性好,但是不易表示为矢量形式,不适合作为粗分类的特征,匹配难度大。

  当然还有许多种不同的统计特征,诸如图描述法、包含配选法、脱壳透视法、差笔划法等,这里就不一一介绍了。

  统计识别与结构识别的结合

  结构模式识别与统计模式识别各有优缺点,随着我们对于两种方法认识的深入,这两种方法正在逐渐融合。网格化特征就是这种结合的产物。字符图象被均匀地或非均匀地划分为若干区域,称之为“网格”。在每一个网格内寻找各种特征,如笔划点与背景点的比例,交叉点、笔划端点的个数,细化后的笔划的长度、网格部分的笔划密度等等。特征的统计以网格为单位,即使个别点的统计有误差也不会造成大的影响,增强了特征的抗干扰性。这种方法正得到日益广泛的应用。

  人工神经网络

  人工神经网络(Artificial Neural Network,以下称ANN)是一种模拟人脑神经元细胞的网络结构,它是由大量简单的基本元件-神经元相互连接成的自适应非线性动态系统。虽然目前对于人脑神经元的研究还很不完善,我们无法确定ANN的工作方式是否与人脑神经元的运作方式相同,但是ANN正在吸引着越来越多的注意力。

  ANN中的各个神经元的结构与功能较为简单,但大量的简单神经元的组合却可以非常复杂,我们从而可以通过调整神经元间的连接系数完成分类、识别等复杂的功能。ANN还具有一定的自适应的学习与组织能力,组成网络的各个“细胞”可以并行工作,并可以通过调整“细胞”间的连接系数完成分类、识别等复杂的功能。这是冯·诺依曼的计算机无法做到的。

  ANN可以作为单纯的分类器(不包含特征提取,选择),也可以用作功能完善的分类器。在英文字母与数字的识别等类别数目较少的分类问题中,常常将字符的图象点阵直接作为神经网络的输入。不同于传统的模式识别方法,在这种情况下,神经网络所“提取”的特征并无明显的物理含义,而是储存在神经物理中各个神经元的连接之中,省去了由人来决定特征提取的方法与实现过程。从这个意义上来说,ANN提供了一种“字符自动识别”的可能性。此外,ANN分类器是一种非线性的分类器,它可以提供我们很难想象到的复杂的类间分界面,这也为复杂分类问题的解决提供了一种可能的解决方式。

  目前,在对于象汉字识别这样超多类的分类问题,ANN的规模会很大,结构也很复杂,现在还远未达到实用的程度。其中的原因很多,主要的原因还在于我们对人脑的工作方式以及ANN本身的许多问题还没有找到完美的答案。



  【点击查看更多精彩内容】

  相关新闻:

  塑胶记忆印刷体预计2010年可望进入市场 
  
红楼梦印刷体祖本212.8万元人民币成交(图)
  
全国首部印刷体“工尺谱”出版发行
分享到: 下一篇:2011年中国印工协重要活动信息发布
  • 【我要印】印刷厂与需方印务对接,海量印刷订单供您任意选择。
  • 【cpp114】印刷机械、零配件供求信息对接,让客户方便找到您。
  • 【我的耗材】采购低于市场价5%-20%的印刷耗材,为您节省成本。
  • 【印东印西】全国领先的印刷品网上采购商城,让印刷不花钱。